
BUIP151: Further Development of the Bobtail/Storm Protocol
Submitted: 31 August 2020

by George Bissias

Introduction

In November of last year, BU awarded roughly $34K for BUIP131: Bobtail Prototype Extending

Storm on Bitcoin Unlimited. With the help of BU developer Griffith, we have developed a hybrid

protocol that incorporates the desirable elements of both the Bobtail and Storm protocols. We

believe that this new protocol also compensates for some deficiencies in those same protocols.

The hybrid protocol name may change, but in this document, we will refer to it as Tailstorm. We

have created a prototype full node implementation for Tailstorm, based on the BU codebase.

In this BUIP, I am requesting $34,580 in additional funds to push development, show larger-scale

operation, and refine and communicate the theoretical foundations of Tailstorm. Specifically, I

would like to develop zero-confirmation capabilities exposed for use in wallet software via BU's

extension library (libbitcoincash), deploy wallet instances on the NextChain testnet alongside the

existing Tailstorm full node software, and compile an academic paper that explores the security

properties of this protocol and reports on the results of the deployment.

Motivation

Two of the most critical barriers to cryptocurrency adoption are transaction confirmation time

and security. For the former, users require fast assurance of future transaction confirmation. And

for the latter, they require reasonable assurance that a confirmed transaction will not be reversed.

The Tailstorm protocol does not decrease average transaction confirmation time, but

using partial PoW, it does allow for users to calculate the probability that a given transaction will

be included in the next block, the probability that a doublespend will be included in the next

block, and the likelihood that some PoW has been diverted to "silently" mine a doublespend. This

enables what is often called a zero-confirmation (or zero-conf) transaction. Such a feature has the

potential to greatly improve network usability, particularly for lower value transactions that do

not require multiple confirmations. However, despite the zero-conf capability of Tailstorm, there

still remains work necessary to describe the probability of confirmation as well as implement a

wallet capable of leveraging this feature.

The Tailstorm protocol also has the potential to dramatically improve transaction security

because it minimizes variance in confirmation time just like Bobtail. However, Tailstorm

introduces several significant changes to Bobtail (discussed below), which themselves have not

yet been vetted from a security standpoint. Thus, in order to claim an overall improvement in

security, Tailstorm requires the academic analysis we propose to conduct in this BUIP.

Beyond zero-conf capabilities, the protocol's minimization of block interval variance dramatically

improves UX for certain types of transfers, notably any type of live exchange where two users are

waiting for at least one confirmation. This type of exchange is important for many P2P use cases,

which are a key focus of Bitcoin Cash in its goal as a worldwide currency for people. Today, with

Bitcoin and Bitcoin Cash, although 10 minutes is the average block discovery time, approximately

5% of blocks arrive after 30 minutes or longer --- this is a painful risk of delay for what should

have been a quick transfer. For Tailstorm, assuming a reasonable choice of parameters, 95% of

blocks will arrive within 12.5 minutes. Note that these results also apply to the multiple

https://bitco.in/forum/threads/buip131-passed-bobtail-prototype-extending-storm-on-bitcoin-unlimited.24903
https://github.com/bissias/bobtail-spec
https://github.com/bissias/bobtail-spec
https://gitlab.com/gbissias/BCHUnlimited/-/tree/bobtail
http://www.nextchain.cash/

confirmations needed for exchanges. Although, requiring multiple confirmations tends to

"smooth" out block variation, Tailstorm will produce even more regular block inter-arrival times.

Results from BUIP131

The first task was to develop a hybrid protocol that combined elements from Bobtail and Storm,

which we label Tailstorm in this document. New nomenclature is introduced. For example, the

blocks containing partial PoW called proofs in Bobtail and delta blocks in Storm, are renamed

subblocks in Tailstorm. Like Bobtail, Tailstorm continues to form strong blocks, which we call

Bobtail blocks, from the PoW represented by the k subblocks with lowest hash value (for tunable

k).

A major early challenge arose from the realization that Bobtail, as described in the latest

academic paper, forms the canonical transaction set from only a single subblock. This means that

zero-conf transactions will be delayed by half a block interval on average, which is unacceptable.

Our solution is to instead use transactions from the union of subblocks. But because subblocks

build upon transactions in earlier subblocks having the same Bobtail block parent, their

dependencies form a directed acyclic graph (DAG). Access to the DAG allows for block

reconstruction and validation (both sub and bobtail blocks) and it also provides assurance that

subblocks contain only compatible transactions (no doublespends). For this reason, another

major change is that Bobtail blocks now include the entire DAG of subblocks connecting the k

subblocks having lowest hash value (where k is a tunable security parameter), as well as the

transactions included in each.

Our full node Tailstorm prototype implementation is available on gitlab as a fork of the official BU

codebase. Griffith and I continue to refine the code, however the basic protocol has been

implemented: subblocks are mined, Bobtail blocks are assembled from those subblocks, and the

blockchain is extended accordingly. We have developed several QA tests that run on the python

RPC framework for verifying block production. Recently we completed a Graphene-based

subblock relay, which allows for block compression using the Graphene protocol. The following

tasks will be completed before the end of work on BUIP131: 1) implementation of compact

Bobtail blocks (that send only subblock hashes), 2) persistence for Bobtail blocks and subblocks

to the block database, and 3) deployment on a 3-node testnet.

Objectives

The objectives for this BUIP are three-fold: zero-confirmation transactions for a BU wallet

implementation, a deployment of both wallet and full nodes to the NextChain testnet, and

submission of the Tailstorm protocol description, deployment details, and security analysis to a

peer-reviewed conference.

1. Zero-confirmation transactions. Because subblocks are incentivized with a fraction of the

overall block reward, the Tailstorm protocol enables higher security for zero-confirmation

transactions than what is provided by Storm alone. Tailstorm DAGs are required to

contain subblocks with compatible transaction sets, which makes a transaction included

in a large DAG more likely to be confirmed than one included only in a small DAG. In fact,

it is possible to assign a probability of confirmation to each transaction based on the

DAG it occupies. We will leverage this property in designing a zero-confirmation facility.

1. Work out statistics of zero-confirmation transactions in Tailstorm.

https://github.com/bissias/bobtail-spec
https://people.cs.umass.edu/~gbiss/bobtail.pdf
https://people.cs.umass.edu/~gbiss/bobtail.pdf
https://gitlab.com/gbissias/BCHUnlimited/-/tree/bobtail
https://people.cs.umass.edu/~gbiss/graphene.sigcomm.pdf

2. Expose DAG-work to wallets through BU's libbitcoincash.so extension library. This

will require implementing the statistical tests developed in part and introducing

hooks for accessing them.

3. Implement the zero-confirmation feature in a wallet compatible with BU's

libbitcoincash.so extension library.

2. NextChain deployment. Our goal for the Tailstorm protocol is to demonstrate its viability

as a future technology for Bitcoin Cash. Therefore, a major output from this BUIP will be

demonstration and confirmation of interoperability and some theoretical properties of

Tailstorm by means of a testnet deployment.

1. Deploy and synchronize both Tailstorm full node as well as zero-confirmation-

enabled wallet nodes on NextChain.

2. Implement and run doublespend experiments to determine efficacy of zero-

confirmation protection.

3. Analysis and conference submission. Another important aspect of protocol design is

engagement with the academic community for the purpose of vetting statistical and

game theoretical concepts. The final major contribution to this BUIP will be preparation of

a submission to a peer-reviewed conference.

1. Compile and analyze results from experiments conducted in the completion of

objective 2b.

2. Conduct a thorough literature search and review.

3. Perform simulation of key statistical processes.

4. Seek to develop security analysis of the Tailstorm protocol using standard

techniques.

Budget and Project Duration

The total project duration will be 36 weeks from December 20, 2020 until August 28, 2021 at a

cost of $34,580 with effort based on part-time FTE. The timeline is as follows with the budget

allocated proportionally.

1. Zero-confirmation transactions [18 weeks]

1. Work out statistics [2 weeks]

2. Expose DAG-work to wallets [2 week]

3. Develop wallet implementation [14 weeks]

2. NextChain deployment [6 weeks]

1. Deploy full and wallet nodes [2 weeks]

2. Implement and run experiments [4 weeks]

3. Analysis and conference submission [12 weeks]

1. Compile and analyze experimental results [3 weeks]

2. Conduct literature review [1 week]

3. Simulate statistical processes [4 weeks]

4. Security analysis [4 weeks]

