
Static difficulty adjustments, with absolutely
scheduled exponentially rising targets

(DA-ASERT) — v.2

Mark B. Lundeberg

July 31, 2020

A version of this document was originally shared around in November
2019. Since it has gained a lot of attention in mid-2020, I’ve revised it. —M

There is an interesting cryptocurrency difficulty algorithm that has the
following form:1

targetN+1 = targetN exp([tN − tN−1 − T]/τ), (1)

where N is the current height of the blockchain, tN is the timestamp of the
most recent block, and tN−1 is the timestamp of the previous block. The
parameter T is the targeted average block interval (e.g., T = 10 minutes
on bitcoin). The parameter τ is a relaxation time and practically could be
anywhere from (say) 50T to 1000T .

Remarkably, this can be rewritten as an expression that makes no ref-
erence to the previous block’s difficulty, using some constants targetref , tref ,
and href (more on their values later, see Sec. 1.3):

targetN+1 = targetref exp([tN − tref − (N − href)T]/τ), (2)

(to prove this equivalence, simply take (2) and calculate targetN+1/targetN).
I refer to this as absolutely scheduled exponentially rising targets (ASERT)
since, as can be seen, it is predetermined what will be the targetN+1 in terms
of tN .

This document explores the properties of Eq. (1) (‘relative exponential’)
and Eq. (2) (‘absolute exponential’) as candidate difficulty algorithms.2

1First suggested by Jacob Eliosoff as simpexp.
2Some more great discussion on this topic: “Unstable Throughput: . . . ”.

1

https://github.com/zawy12/difficulty-algorithms/issues/62#issuecomment-647724540
https://arxiv.org/pdf/2006.03044.pdf

Contents

1 Idealized properties 2
1.1 Basic security against rapid-mining attacks 2
1.2 Memoryless . 3
1.3 Significance and flexibility of reference constants 3
1.4 Generalizations . 4
1.5 Approximate equivalance to ‘WTEMA’ 5
1.6 Rather unique . 5

2 Discussion and practicalities 6
2.1 Clipping . 6
2.2 Computation . 7
2.3 Drift . 8

1 Idealized properties

Since the ideal forms Eq. (1) and Eq. (2) are equivalent, we can discover
useful properties on one form, map it to the other one, and vice versa. This
section will explore such properties, whereas in the next section I’m going to
explore how the equivalence can break down in practice.

1.1 Basic security against rapid-mining attacks

A common problem in difficulty algorithms is that extreme conditions of
hashrate fluctuations or timestamp manipulation might cause the difficulty
algorithm to go ‘off-schedule’ and start producing blocks at an average period
faster than T . This is a concern since it would mean a malicious miner
can abuse the algorithm, continuously collecting block subsidies much faster
than the intended rate, thereby causing premature inflation and flooding the
market.

The form (2) displays a remarkable property, which is that when you push
the schedule ahead by an additional time +τ , the difficulty must increase
by a factor ×e, without exception. Sustained rapid mining would require
getting more and more ahead of schedule, producing an exponentially rising
difficulty, and thus after a short time (some multiple of τ) the rapid mining

2

would become impractically hard. Since the relative form (1) is equivalent,
it inherits this property.

Most difficulty algorithms approximate this property (see Sec. 2.3 on drift)
but the exponential algorithms let us exactly see and analyze it.

1.2 Memoryless

Remarkably, even though Eq. (2) has manifestly an absolute schedule, the
algorithm practically also behaves as if it has a short term memory — this
can be seen in the equivalence to Eq. (1), which only refers to the previous
block. The algorithms are also ‘memoryless’ in the sense of hysteresis, or re-
versibility: if the difficulty rises and falls by any factor, the algorithm returns
to exactly the same state it would have been in, without the perturbation.
This can be seen more directly in Eq. (2), but it applies exactly to Eq. (1).

Note that this memorylessness of ASERT does break down when there is
clipping (Sec. 2.1). In such cases the absolute schedule does manifest itself,
in a very undesireable manner.

1.3 Significance and flexibility of reference constants

Eq. (2) can be rewritten to combine all the reference constants into one, i.e.,:

C = targetref exp((−tref + hrefT)/τ)

targetN+1 = C exp((tN −NT)/τ),
(3)

which shows that the constants targetref , tref , and href have no independent
meaning, and are devices I just made up. The constant C would of course
be an astronomically large number but it would be no less meaningful.

Even though they are arbitrary, the three separated constants can be
helpful for thinking about the behaviour, and a practical implementation
might want to keep separate constants:

• You can choose a fixed height M , and assign: targetref = targetM ,
href = M − 1, and tref = tM−1. This is convenient when the difficulty
algorithm is activated: if M is the last block not under ASERT control,
then these values ensure continuity of the difficulty exactly as if the

3

relative form Eq. (1) were activated instead.3 (This approach was used
in the prior version of this document, but it is by no means the only
way to see things.)

• Nearly identical (but distinct) behaviour would be obtained by set-
ting: targetref = targetM , href = M , and tref = tM . Note this doesn’t
correspond to activation of the relative algorithm but it is close.

• For simplicity it may be helpful to assign tref = 0 (Unix epoch time),
or href = 0, or targetref = 1, to make those values disappear from the
equation. If one such replacement is done, that still leaves one arbitrary
degree of freedom. Two such replacements leaves just one remaining
constant.

• If you are starting a new cryptocurrency project, you might consider
setting tref to the genesis time t0, set href to 0, and targetref to an
initial block-1 difficulty based on an educated guess of the expected
initial economics and hashrate supply.

1.4 Generalizations

There is a generalized form of Eq. (2):

targetN+1 = targetref exp([f(tN , tN−1, . . .) − (N − href)T − tref]/τ), (4)

where f(ta, tb, . . . , tm) is a function that computes some kind of typical times-
tamp out of the provided recent timestamps, which primarily should weight
onto recent timestamps for good response. For example, f() might use a
mean, a weighted mean, a median, a maximum, or something else. The sim-
pler equation (2) is a special case for f(ta, tb, . . .) = ta. Converting this back
to the relative form in terms of the last block, this becomes:

targetN+1 = targetN exp([f(tN , tN−1, . . .) − f(tN−1, tN−2, . . .) − T]/τ), (5)

which shows how any complex time-mixing-averaging process can be properly
incorporated to not have irreversibility defects. For simplicity I’m not going

3It might seem that you could take this and set M = N − n as a moving reference
point, but this is not equivalent. This creates an very badly behaving algorithm due to
decoupling (it will show oscillations with a period of n+1). The only useful value is n = 0,
in which case you recover Eq. (1) exactly. So, either M = N , or M = constant.

4

to discuss Eqns. (4),(5) much, but many of the nice properties of interest
described herein will also apply to these general forms. A practical warning,
though: inclusion of older timestamps may produce oscillations, even with a
large τ .

It is also easy to convert these algorithms into a real-time form, by in-
volving tN+1 into the equation as well. Then, the difficulty of mining can
drop gradually over time even without a block actually being produced yet.
Remarkably, this converts the simplest absolute form Eq. (2) into one that
is independent of the previous block’s information, and yet it functions per-
fectly well.

1.5 Approximate equivalance to ‘WTEMA’

We can take (1) and assume large τ , so that the argument is going to be
generally small, and approximate exp(z) ≈ 1 + z. This produces a difficulty
algorithm known as WTEMA:4

targetN+1 = targetN · (1 − α + αx), (6)

where x = (tN − tN−1)/T , and α = T/τ � 1.
I would argue that (1) (or (2)) is what WTEMA was “meant to be”, as it

corrects the major flaw: the target passes through 0 (difficulty has a singu-
larity) when x = 1 − α−1. This requires a large backwards timestamp jump
but is disastrous if it happens. WTEMA also lacks the perfect reversibility
of the exponential forms, which can be seen as a flaw. On the other hand,
the close connection to (2) explains why WTEMA works so well, and Sec. 1.1
explains why it too is intrinsically secure against rapid-mining attacks: the
WTEMA difficulty is never easier than the exponential one. We also see that
(5) provides a general template for how WTEMA ought to be modified to
use median times, etc.: just set x = (f(tN , tN−1, . . .) − f(tN−1, tN−2, . . .))/T .
So, if one wants an ultra-simple algorithm that doesn’t require calculating
exponentials, then WTEMA is a fantastic choice (supposing the singularity
is inaccessible due to timestamp ordering rules).

1.6 Rather unique

It might be asked, are there other absolutely scheduled algorithms which
make sense to try? As far as I can tell right now, no – the algorithm needs to

4via Tom Harding

5

https://github.com/kyuupichan/difficulty/pull/30

have a time-translation invariance property, along with scale-free (multiplica-
tive) increases/decreases in difficulty. This naturally leads to an exponential
form. There are of course many different forms of the function f(ta, tb, . . .)
that could be tried in the generalized version Eq. (4).

2 Discussion and practicalities

2.1 Clipping

It may seem attractive to take a mathematically simple difficulty algorithm,
and then introduce ‘clipping’: limits on the upward and downward movement
of the difficulty relative to the prior block. Unfortunately, it is actually quite
dangerous to artificially restrict the downward movement of target (upward
movement of difficulty). It may be possible for an attacker to exploit this
limitation and use unusual sequences of block timestamps in order to pump
the difficulty up and down, each time hitting the limit, so that on average
the difficulty is driven down and the attacker can mine many blocks with low
effort.5

Until now I’ve been treating Eq. (1) and Eq. (2) as equivalent, and as
explained in Sec. 1.1 they both have a basic immunity to timestamp manip-
ulations. But if clipping is introduced, then these two forms (relative and
absolute) are no longer equivalent.

A previous version of this document suggested that the absolute form
(Eq. (2)) is still safe for clipping (unlike Eq. (1)). This is partly true: if an
attacker tries to pump the absolute algorithm, they cannot succeed because
the algorithm will not forget the ‘right’ difficulty level. However, there is
another concern: adding clipping to the absolute version means that if the
clipping limits are actually hit, then the algorithm may stick to the limit
for a too-long time, and overshoot the proper endpoint. Depending on the
reaction of the miners, this can induce stalls, bursts, and oscillations.

With the relative version, increases in difficulty (decreases in target) must
not be clipped, as this is precisely what opens the door to exploits. On

5See “timespan limit attack” described at https://github.com/zawy12/

difficulty-algorithms/issues/30; Note that in some algorithms, such exploits
may even be possible without artificial clipping. In general these exploits tend to require
non-monotonic timestamps and so a strong defense against unknown exploits is to have a
timestamp monotonicity rule.

6

https://github.com/zawy12/difficulty-algorithms/issues/30
https://github.com/zawy12/difficulty-algorithms/issues/30

the other hand, I am not aware of any exploits arising from the clipping of
decreases in difficulty (increases in target), in a relative algorithm.6 Still, I
would recommend against doing any kind of clipping.

On a realistic blockchain there is one inevitable form of clipping: there
is a fundamental maximum to the target value. The hard limit is set by the
hash bitwidth, though in the case of bitcoin the rule is arbitrarily tighter
than this by a factor of 232. When the difficulty algorithm hits such a limit,
it counts as a difficulty clipping, and the absolute version (Eq. (2)) will be
susceptible to overshoot, whereas the relative version (Eq. (1)) will behave
more reasonably. Anyway, this should only be happening when the hashrate
is very low, i.e., the chain in question has no market value.

2.2 Computation

It is of course not a good idea to rely on floating point math in a real DA due
to possibly inconsistent rounding between different math libraries / CPUs,7

so, how does one do an exponential algorithm?
As an example, equation (2) can be recast in the following form using

integer bit shifts and multiplies (recall that targets are in fact very large
integers), essentially performing an explicit mixture of low precision fixed
point and floating point math (here, / indicates floor division).

a = (b[tN − tref − (N − href)T] + 215)/216

targetN+1 = [targetref × 2a/216−16] · [f(a mod 216)]

where b = round(216 · [τ−1T] ln 2) and f(N) is some appropriate polynomial
that approximates 2162N/216 over the interval N = 0 . . . 65535. This only
needs to be accurate to the ∼ 0.1% level to be entirely satisfactory; a third-
order polynomial provides ∼ 0.01%.

It is of course crucial in an implementation to specify the exact values of
the reference constants, so that every implementation and installation can
calculate reproducible values. There are many ways to do this, due to the
freedoms mentioned in Sec. 1.3.

6The WTEMA algorithm (Eq. (6)) actually exhibits a natural sort of ‘soft clipping’ of
extreme difficulty decreases, when looked at in comparison to the exponential form. This
has various side-effects but on the whole they might be neutral or even helpful.

7Even though IEEE754 requires perfect consistency for basic arithmetic, it does not for
transcendentals like exp(), and there are various other pitfalls even for basic arithmetic.

7

https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/

With such an absolute difficulty algorithm, any small errors will get im-
mediately forgotten on the next block, so it works fantastically even with a
coarse approximation to exponential. As far as I can tell this is the only real
practical advantage of using absolute instead of relative, and this trades off
with its poor clipping behaviour. In the relative version Eq. (1), a higher
accuracy is required, though some small rounding errors are acceptable. It
might appear that that even small errors could compound over and over
without limit, but in practice the block production rate gives feedback to
the difficulty algorithm, and so the actual effect is bounded and tends to
self-compensate in the long run. Note though: errors in the relative algo-
rithm do enable rapid-mining attacks, so errors must be kept quite small in
magnitude.8

2.3 Drift

Recently there has been discussion on the topic of drift: a measurement of
how far the chain has deviated from exactly one block per time T , for desired
time T . This, of course, depends on where you are measuring relative to. In
general if we use a starting height S with timestamp tS, then the drift for
block N (assumed > S) is defined as:

drift(N,S) = (N − S)T − (tN − tS), (7)

which is positive if the average time per block has been less than T . If we
try to define an absolute drift, there are various reasonable choices for S:
the genesis (S = 0), or the time when the difficulty first became unclipped,
or the time when the difficulty algorithm first activated, etc. In any case,
the choice of S only affects the offset of the absolute drift. This means that
relative changes in drift are well defined, so let’s talk about them here.

Under the most basic possible situation, that of a steady hashrate, a
difficulty algorithm will have a particular average time per block, and we can
assume the algorithm is properly designed to exactly match the desired T
value in this most basic situation;9 thus, almost by definition, the drift value
should not change appreciably under steady hashrate.

8For example, suppose the miners can use timestamp selection to consistently induce
multiplicative errors of (1 + ε) on Eq. (1). They can then steadily mine blocks with an
average time (1 − ετ/T)T . E.g., if ε = 10−4 and τ/T = 103, they can mine at 10%
advantage. Note that if the response time τ is lengthened, their advantage increases.

9A subtlety: this might be different from the constant named T in the algorithm itself.

8

The situation is different with non-steady hashrate. Standard difficulty
algorithms have short term memory in the sense that they only observe re-
cent time differences, and so they are unaware and uncaring of the total value
of drift. This naturally tends to cause an accumulation of drift in the situa-
tion of rising hashrate, as exemplified by the following thought experiment.
Suppose the hashrate rises by 10%, so blocks are coming 10% too fast. The
difficulty algorithm has some typical reaction time τ before it “notices” this
(the reaction time must be fairly long to not be badly affected by random-
ness of mining), and once this happens it resets the difficulty to a 10% higher
level. Because the time of 10% faster blocks lasted a time of about τ , this
means that the drift increased by about +0.1τ . Repeating this process will
add more drift each time. Notice that a longer τ produces more drift.

As a case study we can look at the BTC chain, which has used a sim-
ple periodic averaging algorithm since inception. For the first year or so
(until roughly block 36000), the hashrate was too low and the difficulty was
clipped to the minimum value.10 The block time averaged around 15 minutes,
compared to T = 10 minutes, and this year of slow blocks caused the drift
(measured from genesis) to decrease steadily, reaching a low point around
−140 days. Then, enough hashrate came in to push above minimum diffi-
culty. Since that time, the hashrate has steadily risen, by an overall factor
of X ≈ e30, and the current drift has risen by +370 days since the low point.

It may be noticed that the definition of drift looks very closely related to
the argument of the exponential in the absolute exponential algorithm (it is
especially obvious in Eq. (3)). This close connection means that changes in
drift for the exponential algorithm (either relative or absolute) can be derived
exactly. If hashrate increases by a factor of X then difficulty increases by the
same factor (plus or minus temporary variations). If the difficulty increases
by a factor of X then the drift must increase by precisely:11

∆drift = +τ ln(X).

For a perfect exponential algorithm, the T constant is precisely the effective T . However,
if WTEMA is done with a large value of α, then mining variance causes the time per block
(the effective T) to be noticeably longer than the T value in the formula (but, this depends
on the timestamp distribution). This raises interesting questions of whether compensation
should be done, and what attacks that might open up. Practically, α will be chosen to be
quite small and this distinction is minor.

10https://btc.com/stats/diff
11The absolute drift is: τ ln targetref

targetN+1
− (tref − tS + (S − href)T).

9

https://btc.com/stats/diff

This is a corollary to the security argument in Sec. 1.1, where it was remarked
that the difficulty changes in the exponential DAAs are directly related to
changes in drift.

As indicated by the thought experiment, non-exponential algorithms will
tend to have a similar behaviour, increasing by +τ ln(X) for some charac-
teristic value of τ , provided the hashrate increases at a suitably gentle slope.
In the above BTC study we can see that it indicates a reaction time τ of
(370 days)/ ln(e30) = 12.3 days, which unsurprisingly is close to the algo-
rithm’s difficulty retargeting interval of 2016 blocks. But, non-exponential
algorithms will additionally have some excess drift contribution (plus or mi-
nus) if the hashrate changes too quickly. Non-exponential algorithms may
also have a gradual drift accumulation even with steady hashrate (due to
randomness of block times, or due to bugs), though this is usually small in
magnitude since it’s an easily detected defect.

In all proper short-term-memory algorithms (not ASERT), accumulation
of rounding errors also causes drift, but this should typically be negligible
compared to other drift sources. Clipping events also cause offsets in drift
(but not in ASERT, which fights to get back to its preferred drift vs difficulty
curve, with unfortunate consequences). Since large errors and clipping ought
not to be happening in a well-designed system, it is reasonable to view the
absolute and relative exponential algorithms as having equivalent drift.

10

	Idealized properties
	Basic security against rapid-mining attacks
	Memoryless
	Significance and flexibility of reference constants
	Generalizations
	Approximate equivalance to `WTEMA'
	Rather unique

	Discussion and practicalities
	Clipping
	Computation
	Drift

