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Abstract.  This paper shows how a rational Bitcoin miner should select transactions from 

his node’s mempool, when creating a new block, in order to maximize his profit in the 

absence of a block size limit. To show this, the paper introduces the block space supply 

curve and the mempool demand curve.  The former describes the cost for a miner to supply 

block space by accounting for orphaning risk.  The latter represents the fees offered by the 

transactions in mempool, and is expressed versus the minimum block size required to claim 

a given portion of the fees.  The paper explains how the supply and demand curves from 

classical economics are related to the derivatives of these two curves, and proves that 

producing the quantity of block space indicated by their intersection point maximizes the 

miner’s profit.  The paper then shows that an unhealthy fee market—where miners are 

incentivized to produce arbitrarily large blocks—cannot exist since it requires 

communicating information at an arbitrarily fast rate.  The paper concludes by considering 

the conditions under which a rational miner would produce big, small or empty blocks, and 

by estimating the cost of a spam attack.   
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1. Introduction 

A pressing concern exists over the ramifications of changing (or not) a Bitcoin protocol rule 

called the block size limit.  This rule sets an upper bound on the network’s transactional 

capacity, or—more simply—the number of transactions the network can confirm per second.  

Its origins date back to the late summer of 2010, when Satoshi Nakamoto—worried about a 

spam attack on the fledgling Bitcoin network—modified the source code1 to set a maximum 

permissible size for new blocks appended to the Blockchain.  The limit was set at one 

megabyte, corresponding roughly to three transactions per second.  Although this was only a 

sliver of Visa’s transactional capacity,2 it was over eight hundred times greater than what was 

required at the time.3  Nakamoto said that the limit could be raised in the future when the need 
arrived.4 

 Between July 8 and July 15, 2015, a backlog cresting at over sixty thousand pending 

transactions formed.5  Blocks were filled near capacity6 and users experienced delays.7  At the 

time of writing, the transaction rate is over three hundred times larger than when the block 

size limit was introduced,8 and raising the limit is now being seriously considered.  However, 

concerns regarding whether the network can support larger block sizes have been voiced.  One 

of the concerns in particular is whether—in the absence of a limit or if the limit is far above 

the transactional demand—a healthy transaction fee market would develop which charges 
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users the full cost to post transactions (the term healthy transaction fee market is defined in 

Section 7).  The fear—if this is not the case—is that the resulting subsidy to users would 

incentivize spamming and precipitate a “tragedy-of-the-commons”-type failure where network 

support costs spiral out of control.  The object of this paper is to consider whether or not such 

a fee market is likely to emerge if miners, rather than the protocol, limit the block size.  

Related efforts have been made.  Houy showed that if the marginal cost to a miner to add a 

transaction to a block was zero, then a miner would “[include] all transactions whatever the 

fee attached.”  He concluded that either a minimum fee or a limited block size was required.9  

Andresen explained, however, that due to the increased chances of orphaning a block, the 

marginal cost was not zero; a rational miner should only include a given transaction if its fee 
is sufficient to cover the added risk of orphaning.10  Extending on the work of Houy, we 

account for Andresen’s orphaning factor and show that a rational miner will not in general 

include all fee-paying transactions, and that a healthy fee market is, in fact, the expected 

outcome of rational miner behavior, if block size is unconstrained by the protocol (and 

notwithstanding the assumptions stated explicitly in Section 10). 

In Section 3, we derive the miner’s profit equation—a simple analytical model for the 

expectation value of a miner’s profit per block that accounts for orphaning risk.  We then 

introduce two novel concepts called the mempool demand curve and the block space supply 

curve, in Sections 4 and 5, respectively. We illustrate how the demand curve can be 
constructed from the transactions in a node’s mempool, while we derive the supply curve by 

differentiating the miner’s profit equation with respect to block size, setting the result equal to 

zero, and then solving the ensuing differential equation.  We find that the cost to supply block 

space increases exponentially with the size of the block.  We explain that the supply curve is 

useful because it specifies the miner’s cost of producing a given quantity of block space; and 

we suggest that the demand curve is useful because it represents the maximum fees that a 

miner can claim versus the block size he might consider producing. 

In Section 6, we use the two curves to visualize the size of the block that maximizes the 

miner’s profit.  We also explain how the two curves relate to the more familiar supply and 

demand curves from economics.  In Section 7, we show that an unhealthy fee market—one 
where a miner would be incentivized to produce an arbitrarily large block—is not possible 

because it requires communicating information over a channel at an arbitrarily high bit rate, 

thereby violating the Shannon-Hartley theorem.11  This result applies whether block solutions 

are communicated in full, or first compressed (e.g., using invertible bloom look-up tables).  In 

Section 8, we consider the transaction fee market in more detail; and lastly, in Section 9, we 

estimate the cost of a spam attack.  Let us begin by defining the symbols we use.    

2. List of Symbols 

For the remainder of this manuscript, the following symbols have the specified meanings.  
 

𝐵 bandwidth of a communication 

channel 

 ℙorphan probability that a given block is 

orphaned 

ℬ the set of transactions included in 

a block 
𝑄 block size or block space in 

bytes 

𝑏 number of transactions included 

in a block 
𝑄∗ the block size that maximizes 

the miner’s expected profit 

〈𝐶〉 expectation value of a miner’s 

hashing cost per block 
𝑅 block reward (presently 25 Ƀ) 
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𝐶 channel capacity (bits per 

second) 

𝑆

𝑁
 signal-to-noise ratio of a 

communication channel 

𝑐 speed of light 𝑇 expected block interval time   

(~10 min) 

𝑑 distance over which the block 

solution is communicated  

〈𝑉〉 expectation value of a miner’s 

revenue per block 

𝐻 total hash rate of Bitcoin network 𝛾 block solution coding gain 

ℎ miner’s individual hash rate 𝜂 amortized cost per hash  

𝑖 index used to enumerate the 

transactions in mempool 

〈Π〉 expectation value of a miner’s 

profit per block 

𝑀 money (bitcoins)  𝜌 fee density, or the price per 

byte for block space 

𝑀demand partial sum of the transaction fees 

in mempool in order of 

descending fee density 

 𝜌demand fee density bid by a given 

transaction in mempool 

𝑀supply miner’s cost due to orphaning to 

produce a certain block size 

 𝜌supply miner’s cost per byte to 

produce additional block space 

𝒩 the set of transactions in a 

miner’s mempool  

 𝜏 block solution propagation time 

𝑛 number of transactions in a 
miner’s mempool 

 Δ𝜏 block solution propagation time 
minus the time to communicate 

the block header 

The symbol $ refers to US dollars; price conversions between bitcoin and US dollars assume 

that 1 Ƀ = $300.   

3. The Miner’s Profit Equation and the Effect of Orphaning 

By attempting to mine a block, the miner expects to generate revenue 〈𝑉〉 at hashing cost 〈𝐶〉 

to earn a profit per block 

〈Π〉 = 〈𝑉〉 − 〈𝐶〉. (1) 

The miner’s expected hashing cost is equal to the product of his hardware’s amortized price 

per hash,12 𝜂 , his hash rate, ℎ , and the length of time he expects to work on the block 

(typically the block time 𝑇).  This can be expressed as the following equation: 

〈𝐶〉 = 𝜂ℎ𝑇. (2) 

The miner’s expected revenue is equal to the amount he would earn if he won the block 

multiplied by his probability of winning.  The amount he would earn is the sum of the block 

reward, 𝑅 , and the transaction fees, 𝑀 .  His probability of winning, assuming all blocks 

propagate instantly, is equal to the ratio of his hash rate (ℎ) to the total hash rate of the Bitcoin 

network (𝐻).  Putting this together, his expected revenue would be 〈𝑉〉 = (𝑅 + 𝑀) ℎ 𝐻⁄ .  

The problem with this equation is that it does not reflect the miner’s diminished chances of 

winning if he chooses to publish a block that propagates slowly to the other miners.  Even 

though he may find the first valid block, if his solution is received after most miners are 
working on another, then his block will likely be discarded.  This effect is called orphaning.  
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It makes including low-fee transactions unappealing if the added fee revenue is not sufficient 

to offset the increased risk. With this effect in mind, our equation for the miner’s expected 

revenue gets discounted by the chances that his block is orphaned, ℙorphan, becoming 

〈𝑉〉 = (𝑅 + 𝑀)
ℎ

𝐻
(1 − ℙorphan). (3) 

It is intuitive that the chance of orphaning should be low if the propagation time is short, 
and should be high if the propagation time is long.  Using the fact that block times follow a 

Poisson distribution, Andresen approximated10 the orphaning probability as  

ℙorphan = 1 − 𝑒−
𝜏
𝑇 , (4) 

where 𝜏 is the block propagation time.  Fig. 1 visualizes this effect.  It must be emphasized 

that 𝜏 is the total time between when a miner has found a solution and when that solution has 

been communicated and accepted by his peers.13   

 

 

Fig. 1.  The chance that a block gets orphaned increases with the amount of time it takes the 

block to propagate to the other miners.  

By substituting Eqs. (2 - 4) into Eq. (1), we can now write the miner’s profit equation: 

〈Π〉 = (𝑅 + 𝑀)
ℎ

𝐻
𝑒−

𝜏
𝑇 − 𝜂ℎ𝑇. (5) 

A rational miner selects which transactions to include in his block in a manner that maximizes 

the expectation value of his profit.  To better understand how he would make this selection, 

we will next introduce the concepts of the mempool demand curve and the block space supply 

curve.   

4. The Mempool Demand Curve 

Mempool is the name given to the set of valid transactions that the miner is aware of but that 

have not yet been included in a block.  We denote this set as 𝒩  and the number of 

transactions contained within it as 𝑛.  In the absence of a block size limit, the miner is free to 

select 𝑏 ≤ 𝑛 transactions from 𝒩 to create a new block ℬ ⊂ 𝒩. 
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To construct the mempool demand curve, we first imagine sorting the mempool from 

greatest fee density (i.e., the fee per size of the transaction in bytes) to least, and then 

associating an index {𝑖 ∶ 1, 2, … , 𝑛 − 1, 𝑛}  with each transaction in the resulting list.  As 

illustrated in Fig. 2, each transaction can be thought of as a triangle whose height represents 

its fee, whose width represents its size in bytes, and whose slope represents its fee density.  

 

 

Fig. 2. A transaction can be visualized as a right triangle: its height represents its fee, its 

width represents its size in bytes, and its slope represents its fee density.  To construct the 

mempool demand curve, we first sort the transactions in mempool in order of descending 

fee density.   

Define 𝑀demand(𝑏) as the sum of the fees offered by each transaction in this sorted list: 

𝑀demand(𝑏) ≡ ∑ fee𝑖
𝑏
𝑖=1 ; and define 𝑄(𝑏) as the sum of each transaction’s size in bytes: 

𝑄(𝑏) ≡ ∑ size𝑖
𝑏
𝑖=1 .  The mempool demand curve is then described parametrically as the 

sequence of points in the 𝑀𝑄-plane, [𝑄(𝑏),  𝑀demand(𝑏)], as 𝑏 is incremented from 1 to n.  It 

can be visualized by stacking the triangles from Fig. 2 corner-to-corner as shown in Fig. 3.  A 

point on the curve represents the maximum fees a miner can claim by producing a given 
quantity of block space.  This mempool demand curve helps us reduce a multi-dimensional 

selection problem into a one-dimensional one.  

 

 

Fig. 3.  The mempool demand curve describes the maximum fees a miner can claim from 

his mempool, 𝑀, as a function of the quantity of block space, 𝑄, he might produce. To 

construct this curve, the triangles representing the sorted transactions in mempool are 

stacked vertex-to-vertex as shown.  
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5. The Block Space Supply Curve 

The size of the block a miner elects to produce controls the fees he attempts to claim, 𝑀(𝑄), 
and the propagation time he chooses to risk, 𝜏(𝑄).  Both these variables affect the expectation 

value of his profit. 

To investigate this in more detail, we define the neutral profit as the profit (or loss) the 

miner would earn by publishing an empty block.  We can construct a fee curve, 𝑀supply(𝑄), in 

the 𝑀𝑄-plane where all points on the curve return the neutral profit by requiring that the 

miner’s profit (cf. Eq. 5) remains constant for any block size: 

                   
𝑑

𝑑𝑄
〈𝛱〉 =

𝑑

𝑑𝑄
{[𝑅 + 𝑀supply(𝑄)]

ℎ

𝐻
𝑒−

𝜏(𝑄)
𝑇 − 𝜂ℎ𝑇} = 0. (6) 

Eq. (6) is an ordinary differential equation that we show in the Appendix has solution 

𝑀supply(𝑄) = 𝑅 (𝑒
∆𝜏(𝑄)

𝑇 − 1), (7) 

where ∆𝜏(𝑄) ≡ 𝜏(𝑄) − 𝜏(0).  We call this the block space supply curve.  It represents the fees 

a miner requires to cover the additional cost of supplying block space 𝑄 (Fig. 4); these costs 

grow exponentially with the propagation time.  If a block can be constructed with 𝑀𝑄 -

coordinates above the curve, the miner has a surplus; if not, he has a deficit and would be 

better off mining an empty block.  We next consider how he can use this curve, along with the 

mempool demand curve, to maximize his profit.   

 

 

 

Fig. 4.  The block space supply curve describes the cost for a miner to produce a block of a 

certain size.  Consider the three blocks of size 𝑄 shown:  ℬ+ , ℬ and ℬ−.  Since ℬ+ lies 

above the curve, the miner would expect a surplus equal to 𝑀fees+ − 𝑀cost by mining it. 

The block ℬ lies on the curve, and hence the miner would be indifferent to mining that 

block over an empty block.  The block ℬ−, on the other hand, lies below the curve and the 

miner would expect to incur a deficit if he mined it (and thus would prefer to mine an 

empty block).  Note that the block  ℬ−  would result in a surplus with faster block 

propagation. 
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6. Maximizing the Miner’s Profit 

To maximize his profit, the miner constructs a mempool demand curve from the real 

transactions pending in his mempool, and constructs a block space supply curve from 

empirical data he has on propagation delay versus block size (to estimate 𝜏).  The block size 

𝑄∗ where the miner’s surplus, 𝑀demand − 𝑀supply, is largest represents the point of maximum 

profit (Fig. 5a).  This is the size of the block a rational miner should create. 

 

 

Fig. 5.  The miner’s surplus is greatest when the gap between 𝑀demand and 𝑀supply is a 

maximum.  This occurs when the derivatives of the curves intersect at 𝑄∗; or, in other 

words, when supply meets demand.  Producing a smaller block than 𝑄∗ leaves profitable 

fee-paying transactions behind, while producing a larger block results in too high an orphan 

rate. 

 We can draw a parallel to the traditional economic supply and demand curves14 with only 

a bit more work.  The traditional supply curve represents the unit price of a commodity at a 

given level of production 𝑄 . However, so far our analysis has considered the price per 

complete block.  The price per byte, 𝜌,15 for the miner to produce a given quantity of block 

space follows by differentiating 𝑀supply with respect to 𝑄: 

𝜌supply(𝑄) ≡
𝑑

𝑑𝑄
𝑀supply =

𝑅

𝑇

𝑑𝜏

𝑑𝑄
𝑒

𝜏(𝑄)
𝑇 . (8) 
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We can construct something similar to the traditional demand curve by differentiating 

𝑀demand with respect to 𝑄: 

𝜌demand(𝑄) ≡
𝑑

𝑑𝑄
𝑀demand.  

As illustrated in Fig. 5 (b), the block size 𝑄∗ where the miner’s profit is greatest occurs when 

𝜌supply(𝑄∗) = 𝜌demand(𝑄∗).  

We can think of 𝜌supply and 𝜌demand as the differentiated curves and 𝑀supply and 𝑀demand as the 

integrated curves.  Both are useful.  Armed with these results, let us now consider the 

conditions under which a healthy fee market should emerge. 

7. Conditions for a Healthy Fee Market 

We consider three market conditions for Bitcoin transaction fees: healthy, unhealthy and non-

existent.  In a healthy fee market, the miner’s surplus is maximized at a finite quantity of block 
space, and thus the miner is incentivized to produce a finite block (Fig. 6a).  In an unhealthy 

market, the miner’s surplus continually increases with block space, and therefore a rational 

miner should produce an arbitrarily large block (Fig. 6b).  In a non-existent market, including 

any transactions results in a deficit to the miner, and so the miner is better off producing an 

empty block (Fig. 6c).  

 

 

Fig. 6. This chart illustrates healthy, unhealthy and non-existent transaction fee markets.  In 

a healthy market, the miner’s surplus is maximized at a finite block size (a).  In an 

unhealthy market, the miner’s surplus continually increases with block space suggesting 

that he should produce an infinite block (b).  In a non-existent market, the miner cannot 

earn a surplus by including transactions and is thus better off producing an empty block (c).  

We can define the conditions for each type of market more rigorously if we make the 

assumption that block space is a normal economic commodity that obeys the law of demand 
(i.e., the quantity of block space demanded increases monotonically as the unit price per byte 

decreases).16 Although we will not prove it, it is straightforward to calculate the constraints on 

the supply curve and the propagation time for each type of market (Table 1).  
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Table 1. Healthy, unhealthy and non-existent fee markets (positive inflation) 

Market     

type 

Block size    
(maximizes profit) 

Demand      

constraint17 

Supply      

constraint 

Propagation time 

asymptote 

Physically 

possible? 

Healthy Finite 

𝑑�̅�demand

𝑑𝑄
< 0 

𝑑𝜌supply

𝑑𝑄
> 0 𝜏(𝑄) > 𝑂(log 𝑄) Yes 

Unhealthy Infinite 
𝑑𝜌supply

𝑑𝑄
< 0 𝜏(𝑄) < 𝑂(log 𝑄) No 

Non-existent Zero 𝜌supply > �̅�demand - Yes 

 

As described in Table 1, an unhealthy fee market requires a propagation time that grows 

asymptotically with block size slower than log 𝑄.  Using physical arguments, we can show 

that this is not possible.  To proceed, expand 𝜏(𝑄) in a power series around 𝑄 = 0 to get 

𝜏(𝑄) = 𝜏(0) +
𝑑𝜏

𝑑𝑄
|

𝑄=0

𝑄 + 𝑂(𝑄2).  

The first term represents the communication channel’s lag: for the purposes of this paper, 
it is the time it takes to communicate the block header across the channel.  It has a physical 

lower bound due to the speed of light constraint  𝜏(0) ≥ 𝑑/𝑐, where 𝑑 is the distance over 

which the information is communicated and 𝑐 is the speed of light.     

 The second term partially relates to the channel’s carrying capacity and has a lower bound 

described by the Shannon-Hartley theorem.11  We can see this more clearly by setting 

1

𝛾𝐶
=

𝑑𝜏

𝑑𝑄
|

𝑄=0

 ⟶   𝐶 =
1

𝛾

𝑑𝑄

𝑑𝜏
|

𝑄=0
  

where 𝛾 is the coding gain and 𝐶 is the channel capacity (with units of bits of information per 

second). The carrying capacity of a communication channel is limited to 𝐶 = 𝐵 log2(1 + 𝑆

𝑁
), 

where 𝐵 is the channel’s bandwidth, 𝑆 is the signal power and 𝑁 is the channel’s noise power.  

The third term lumps together all the terms of order 𝑄2  and greater. In any practical 
implementation these terms will exist simply due to the messiness of the real world; however, 

the author is not aware of any physical reason they must exist.  For the remainder of the 
paper, we will assume these terms are negligible compared to the constant and linear terms, 

in which case we can make the approximation  

∆𝜏(𝑄) = 𝜏(𝑄) − 𝜏(0) ≈
𝑄/𝛾

𝐶
 . (9) 

This equation states that the extra propagation time is approximately equal to the size of the 

block produced, divided by the coding gain with which the block solution can be transmitted, 

and divided by the effective capacity of the communication channel.  Since neither 𝐶 nor 𝛾 

can be infinite, this term must be finite.  Furthermore, there is no reason to expect 𝐶 or 𝛾 to be 

functions of 𝑄 to any appreciable extent, since 𝐶 is a physical property of the channel and 

since 𝛾 is the degree to which the transactional information within a block can be compressed.  

This means that no physical communication channel should have a block propagation time 

that grows asymptotically slower than 𝑂(𝑄) .  Since this is faster than the 𝑂(log 𝑄) 

requirement to achieve a healthy fee market (assuming 𝑅 > 0), an unhealthy fee market is not 

physically possible.   
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8. Big Blocks, Small Blocks and Empty Blocks 

To put numbers to our analysis, we express Eq. (8) in terms of the coding gain and channel 

capacity (cf. Eq. 9):  

𝜌supply(𝑄) ≈
1

𝛾𝐶

𝑅

𝑇
𝑒

𝑄
𝛾𝐶𝑇 . (10) 

This equation describes the marginal fee density required for a miner to profitably add another 

transaction to a block of size 𝑄.  It is plotted in Fig. 7 (for 𝑅

𝑇
= 25Ƀ

10 min
) and illustrates the fee 

density required to incentivize a miner to produce big, small and empty blocks, at various 
block solution propagation rates.  The important relationships to note are (1) that fees become 

exponentially more expensive if more transactions bid for space in a block, (2) that fees 

(measured in Ƀ) become cheaper with improvements in propagation rates, and (3) that a 

minimum fee density, below which rational miners will produce empty blocks, exists.   

 

 

Fig. 7.  A rational miner will produce a big block if his mempool is full of high fee density 

transactions, and will produce an empty block if no transactions pay a fee sufficient to 

offset the orphaning risk.  Transaction fees decline with improvements to the rate at which 

block solutions propagate across the network.  

The fee density is sensitive to the assumed value for the block propagation impedance.  

Table 2 summarizes four different estimates for the propagation impedance, along with the 
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minimum fee density associated with each.  In the next section, and for each of these four 

estimates, we calculate the cost to fill a block with 128 MB of spam.  

Table 2.  Estimates for the Block Solution Propagation Impedance and the             

Associated Minimum Fee Density 

Estimate name 

Propagation 

impedance, 1 𝛾𝐶⁄  

(sec/MB) 

Method Year Ref. 

Min. fee 

density 

𝑅 𝛾𝐶𝑇⁄  
(μɃ/kB) 

Decker and Wattenhofer 80 Direct measurement 2013 10 3,333 

Tradeblock 17.1 Direct measurement 2015 18 713 

This study 7.6 Defineda as 1
𝛾𝐶

= 𝑇
𝑅

𝑀
𝑄

 2015 19 318 

Relay network 2.0 Taken as T5 time to 99% 2015 20 83 

a 
The estimate shown in the table used M and Q values taken from the Blockchain over Q2 2015.  Refer to note 19 for more details. 

9. Cost of a Spam Attack 

We can interpret the block space supply curve as a minimum bound on the cost an attacker 

must bear to produce a significant quantity of blockchain spam.  In the case where the attacker 

is a miner, it represents the cost imposed by orphaning risk (e.g., he may lose the block 

rewards for several spam blocks before one “sticks”).  In the case where the attacker is not a 
miner, it represents the minimum fees necessary to entice a rational miner to publish a large 

block.  The spam cost (cf. Eqs. 7 and 9) is approximately 

𝑀spam(𝑄) ≈ 𝑅 (𝑒
𝑄

𝛾𝐶𝑇 − 1). (11) 

The cost increases exponentially with the quantity 𝑄 of spam stuffed into a block.   

Fig. 8 plots contours of constant spam quantity; it illustrates how the cost to produce spam 

increases as an attacker attempts to fill a block with additional bytes of transactional data, and 

how the spam cost decreases as network interconnectivity improves.  Table 3 lists the 

estimated spam costs, along with a comparison to the minimum fee densities calculated in 

Section 8.  Due to the exponential in Eq. (10), producing an exceptionally large spam block 

requires an attacker to pay an effective fee significantly greater than the minimum fee.    

Table 3.  Cost to Produce a Block That Contains 128 MB of Spam  

Estimate name 

Propagation 

impedance 

1 𝛾𝐶⁄  
(sec/MB) 

Quantity 

of spam 

𝑄       
(MB) 

Cost of     

spam            

𝑀                   
(Ƀ) 

Eff. fee 

density    

𝑀/𝑄   
(μɃ/kB) 

Min. fee 

density 

𝑅 𝛾𝐶𝑇⁄  
(μɃ/kB) 

Eff. fee 

divided by 

min. fee 

Decker and Wattenhofer 80 

128 

646×106 5,043×106 3,333 1.51×106 

Tradeblock 17.1 935 7,304 713 10.3 

This study 7.6 101 793 318 2.50 

Relay network 2.0 13 104 83 1.25 
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Fig. 8.  This chart illustrates the cost to publish spam blocks of various sizes under past, 

current and future network conditions (labeled points refer to 128 MB blocks at various 

propagation speeds).  The cost of a spam attack increases exponentially with the size of the 

spam block; however, improvements in the rate at which block solutions can be 

communicated to the other miners significantly decrease the cost of the attack.  

It is interesting to note that the four-week moving average for the price of one bitcoin at 

the time when the block size limit was introduced (September 6, 2010) was $0.068.  The cost 

to add gigabytes of blockchain spam was thus measured in thousands of dollars, rather than 

millions as it is today.  Since the spam cost is measured in bitcoins, a high market value for a 

bitcoin is an effective anti-spam measure.   

10. Conclusion 

We showed that a transaction fee market should emerge without a block size limit if miners 

include transactions in a manner that maximizes the expectation value of their profit.  A 
critical step in establishing this result was our calculation of the miner’s cost to supply 

additional block space by accounting for orphaning risk.  Not unexpectedly, we showed that 

the cost of block space was proportional to both Bitcoin’s inflation rate, 𝑅

𝑇
, and the amount of 

time it takes per uncompressed megabyte to propagate block solutions to the other miners, 1

𝛾𝐶
.  

More interestingly, however, we showed that the orphan cost is not static, but rather increases 

exponentially with the block size, 𝑄, demanded:  
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𝜌supply(𝑄)    ≈
1

𝛾𝐶

𝑅

𝑇⏟
Static

approximation

𝑒
𝑄

𝛾𝐶𝑇
⏞

Correction

.  

Not only is there a minimum fee density below which no rational miner should include any 

transactions as Andresen observed,10 but the required fee density also naturally increases if 

demand for space within a block is elevated.21  Indeed, a rational miner will not include all 

fee-paying transactions, as urgent higher-paying transactions necessarily bump lower-fee 

transactions out, thereby bidding up the minimum fee density exponentially with demand.  

Analogously, an attacker who wishes to produce a large spam block—whether the attacker is 

the miner or a user—must pay an effective fee density significantly greater than the cost per 

byte he would pay for a modest amount of block space. A fee market naturally emerges.   
We made three important simplifying assumptions in this paper: (1) we assumed the 

probability of orphaning a block was well characterized by a single parameter that represented 

the time between when a miner had solved a block and when his solution had been 

communicated and accepted by his peers, (2) in Sections 7 to 9, we assumed that this time 

parameter had a lower bound, in part, due to the capacity of the channels used to communicate 

the solutions and by the coding gain with which they could be compressed, as described by the 

Shannon-Hartley theorem, and (3) we ignored the costs a miner bears when he commits 

transactions to a block beyond those due to orphaning.  These simplifications bring up 

questions that deserve further study: 
(1) The time it takes to propagate information to the other miners is not in general 

constant across the network, 22  while the mempool is largely homogenous. This 

suggests that, assuming equal hashing costs, miners who can propagate their block 

solutions faster will earn a larger surplus.  Relatedly, recent evidence also suggests that 

miners may begin mining prior to fully receiving and validating new blocks.23  How 

do these phenomena affect the current analysis? 

(2) Imagine the existence of a mining cartel, interconnected with high-capacity relay 

channels and committed to standardized mempool policies (to facilitate dense 

compression of block solutions).  Such a cartel could greatly reduce the time required 

to propagate solutions to its other members.  Do we expect such cartels to form and 
what might be their effect?  

(3) When a miner accepts a transaction that increases the set of unspent outputs (UTXO), 

he takes on a liability equal to the present value of the cost of storing those new 

outputs indefinitely far into the future. Is a healthy fee market expected to emerge that 

charges users the true cost of expanding Bitcoin’s UTXO set? 

We conclude by noting that the analysis presented in this paper breaks down when the 

block reward falls to zero.  It suggests that the cost of block space is zero; however, this would 

suggest zero hash power, which in turn would suggest that transactions would never be mined 

and, paradoxically, that no block space would be produced.  Happily, questions about the 
post-block reward future can be explored at a leisurely pace, as we have a quarter-century 

before it begins to become a reality.  Into the distant future then, a healthy transaction fee 

market is expected to exist without a block size limit.    
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Appendix 

The block space supply curve can be derived by finding the function of block size, 𝑀supply(𝑄), 

that describes the fees required to precisely compensate for orphaning risk.  Mathematically, 

we require that the miner’s profit (cf. Eq. 5) remain constant for any quantity of block space, 

𝑄: 

𝑑

𝑑𝑄
〈𝛱〉 =

𝑑

𝑑𝑄
{[𝑅 + 𝑀supply(𝑄)]

ℎ

𝐻
𝑒−

𝜏(𝑄)
𝑇 − 𝜂ℎ𝑇} = 0. (A1) 

Eq. (A1) can be re-written 

ℎ

𝐻

𝑑

𝑑𝑄
{[𝑅 + 𝑀supply(𝑄)]𝑒−

𝜏(𝑄)
𝑇 } −

𝑑

𝑑𝑄
{𝜂ℎ𝑇} = 0,  

and then the terms that do not depend on 𝑄 eliminated: 

𝑑

𝑑𝑄
{[𝑅 + 𝑀supply(𝑄)]𝑒−

𝜏(𝑄)
𝑇 } = 0.  

By the fundamental theorem of calculus 

         ∫
𝑑

𝑑𝑞
{[𝑅 + 𝑀supply(𝑞)]𝑒−

𝜏(𝑞)
𝑇 }

𝑄

0

𝑑𝑞

= [𝑅 + 𝑀supply(𝑄)]𝑒−
𝜏(𝑄)

𝑇 − [𝑅 + 𝑀supply(0)]𝑒−
𝜏(0)

𝑇 = 0 

and since by definition 𝑀supply(0) = 0 

 𝑀supply(𝑄)𝑒−
𝜏(𝑄)

𝑇 + 𝑅𝑒−
𝜏(𝑄)

𝑇 = 𝑅𝑒−
𝜏(0)

𝑇   

so 

𝑀supply(𝑄) = 𝑅 (𝑒
∆𝜏(𝑄)

𝑇 − 1), (A2) 

where ∆𝜏(𝑄) ≡ 𝜏(𝑄) − 𝜏(0).   Eq. (A2) thus describes the cost to produce block space 𝑄 

accounting for orphaning risk.  For the purposes of this paper, 𝜏(0) should be interpreted as 

the time it takes to propagate the block header.   
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Notes 

1 The block size limit was implemented with two Git commits.  The first, on 14-Jul-2010, prevented clients 

from mining blocks larger than 1 MB (commit a30b56e), while the second, on 06-Sep-2010, prevented the 

network from accepting blocks larger than 1 MB (commit 8c9479c).  Source: Github. 

2 In 2010, the Visa network processed 2,000 transactions per second on average.  Source: 

https://en.bitcoin.it/wiki/Scalability. 

3 On September 6, 2010, the 4-week moving average for daily transactions was 354 per day.  A 1 MB block 

size would permit 144 MB of transactional data per day.   At an average transaction size of 500 bytes, this 

would allow 288,000 transactions per day to be logged to the Blockchain, or 288,000 / 354 = 814 times more 

than the demand at that time.  Source: blockchain.info. 

4 Satoshi Nakamoto commented on 4-Oct-2010 on the Bitcoin Forum that a larger blocksize limit "can be 

phased in, like: if (blocknumber > 115000) maxblocksize = largerlimit.”  Source: bitcointalk.org. 

5 The transaction backlog peaked at over 64,000 unconfirmed transactions on July 14, 2015.  Source: 

statoshi.com.  

6 The author has been tracking the moving seven-day average of the block size, and recorded a surge to over 

70% capacity the seven days beginning 08-Jul-2014.  Source: https://bitcointalk.org 

/index.php?topic=68655.msg11982079. 

7 J. Donnelly. “Bitcoin Network Still Backlogged With Tens of Thousands of Unconfirmed Transactions, 

Causing Delays.” Bitcoin Magazine. 07-Jul-2015.  

8 The average number of transactions per day (4 week moving average) centered on September 6, 2010 was 

335.  The 4-week moving average centered on 01-Jul-2015 was 133,225: 376x times greater.  Source: 

blockchain.info. 

9 Nicolas Houy. “The economics of Bitcoin transaction fees.”  Self published 24-Feb-2014 (v0.1). The quote 

from Houy in the main text is taken from page 8, paragraph 3, last sentence.  It is clear that he does not 

consider the orphan cost when he writes on p. 4 that “if an individual has hashing power h and the total 

network hashing power is H, he will earn, with a probability h/H, a reward R plus the transaction fees given 

above.” 

10 In the winter of 2013, Gavin Andresen wrote a Gist “to come up with a back-of-the-envelope estimate for 

how much it costs a miner to create larger, rather than smaller, blocks” where he presented the orphaning 

factor used in this paper.  Source: https://gist.github.com/gavinandresen/5044482. 

11 Claude E. Shannon. "Communication in the presence of noise." Proc. Institute of Radio Engineers 37 (1): 

10–21, January 1949. 

12  The hardware’s amortized price per hash, 𝜂 , includes its fully amortized cost as well as electricity, 

maintenance and the cost of supporting infrastructure.   

13 We leave the precise definition of the propagation time “fuzzy” with regards to its homogeneity across the 

network or exactly what fraction of the hash power the solution should have reached in this time period.   

14 Usually attributed to Alfred Marshall, Principles of Economics, 1890.  

15 We use the symbol 𝜌 because it is visually similar to the symbol P often used to denote the traditional 

supply and demand curves, while still reflecting that fact that what it is describing is the fee density (𝜌 is 

often used for density in physics and engineering).   

16 In economics, the law of demand states that, all else being equal, as the price of a product increases (↑), 

quantity demanded falls (↓); likewise, as the price of a product decreases (↓), quantity demanded increases (

↑).  Source: https://en.wikipedia.org/wiki/Law_of_demand. 
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17 The curve �̅�demand differs slightly from the curve 𝜌demand.  The latter represents the empirical demand 

measurable from a miner’s mempool, while the former represents the traditional demand curve that is less 

quantifiable (the demand that would exist if the price was different).   

18 Tradeblock performed a careful study where they measured the time it takes on average for new block 

solutions to be accepted by 50% of the nodes they were connected to.  For our purposes, the time to reach 

50% of the hashing power would be preferable; however, this number was not available.  Source: 

https://tradeblock.com/blog/bitcoin-network-capacity-analysis-part-6-data-propagation. 

19 Between 1-Apr-2015 and 30-Jun-2015, the Blockchain grew by 𝑄 = 5,100 MB while the total fees earned 

by miners over the same period averaged 17.82 Ƀ/day × 91 days → 𝑀 = 1,621 Ƀ.  An estimate for the 

propagation impedance can be made as  1
𝛾𝐶

= 𝑇
𝑅

𝑀
𝑄

= (600 s)(1621 Ƀ)/[(25 Ƀ)(5100 MB)] = 7.62 s/MB.  

Source: blockchain.info. 

20 Matt Corallo’s Relay Network Statistics.  Source: http://bitcoinrelaynetwork.org/stats.html.  

21 It makes perfect sense that the cost to supply a kilobyte of block space increases with block size.  Imagine 

that at some very large block size the probability that a miner’s block was orphaned was exactly 100%.  If 

this is true, then just before this point, the cost of a bit more block size would be infinite: there is no 

transaction fee a miner would rationally accept in exchange for including an extra transaction because he 

would be guaranteed to have his block orphaned if he did.  From this view point, then it is intuitive that as 

the probability of orphaning increases, the cost of adding another transaction must increase too.   

22 Peter Wuille showed via simulation that miners connected with fast channels can earn a greater profit per 

hash than miners connected over slower channels.  This is in-line with the results presented in this paper, as 

a miner with faster communication channels would have a lower cost of production yet select transactions 

from the essentially the same mempool demand curve, thereby earning a greater surplus.  Source: 

http://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg08161.html. 

23 For example, F2Pool was observed mining on invalid blocks on 3-Jul-2015, due to their use of SPV 

mining.  Source: https://www.reddit.com/r/Bitcoin/comments/3c2cfd/psa_f2pool_is_mining_invalid_blocks/ 


